Handcrafted Portable Steel Vacuum Chamber
The **X-VAC Chamber™** is a portable, custom designed steel chamber, ideal for vacuum degassing Hapco’s liquid resin products. It features a 1.5” thick acrylic lid that rests on a cast-in, polyurethane rubber gasket. The lid is attached to the steel chamber via a heavy-duty steel hinge, allowing the lid to be left in a vertical position while placing items into the chamber.

Standard Features
- Custom Steel Construction
- 1.5” Thick Clear Acrylic Lid
- Ergonomic Handle
- 0-30 inHg Vacuum Gauge
- Wheels(4)

Specifications
- 18.5” Deep to Shelf
- 23.5” in Diameter
- 11,600 Cubic Inches
- 169 lbs.

Vacuum Pump (Optional)
- Dimensions: 20”L, 12”W, 16”H
- 1/2 Horse Power
- Displacement: 5.6 cfm
- Ultimate Pressure: 1x10^-4 Torr
- Voltage: 115/230
- Watts: 8.4/4.2
Vacuum degassing is the removal of air bubbles which become entrapped in the mixture when mixing the components. Here are the steps involved in using the X-VAC Chamber™ to degas resin mixes, silicone and similar liquids.

1. Lift the chamber lid until it stops.

2. Place items to be de-gassed in the chamber.

 Note: Be sure containers are at least 4 times larger than the liquid being degassed.

3. Lower the lid slowly.

4. With the vacuum pump on, turn the valve so the arrow is pointing down.

5. Watch the mixture carefully. When the chamber is undergoing the evacuation, the mixture will begin to rise, slowly at first. At nearly full vacuum the material should swell up and air bubbles will appear and burst at the surface. After a few seconds, the material should collapse down to its original volume. Occasional bubbles may continuously appear at the surface. If the mixture looks like it will overflow, momentarily reduce the vacuum by opening and closing the vacuum valve. Repeat if necessary.

6. Wait for about 30 seconds after the collapse and turn the valve so the arrow is pointing up.

 Note: One can also monitor the time and level on the vacuum gauge as well as the material to determine the length of time to hold it under vacuum. The amount of time it takes to degas is highly dependent on a number of factors including:

 - **The vacuum pump** - Power is indicated by cubic feet per minute and ultimate pressure.
 - **The size of the hose** - The shorter the better.
 - **The depth to surface ratio of the material** - The shallower the material is, the quicker the air will escape through the surface.
 - **The material’s characteristics** - The viscosity, surface tension, temperature, etc.